THE HYBRID-SYNCHRONOUS MACHINE OF
THE NEW BMW i3 & i8
CHALLENGES WITH ELECTRIC TRACTION DRIVES FOR VEHICLES
WORKSHOP UNIVERSITY LUND

BMW GROUP

BMW i3.
VEHICLE CONCEPT.

Maximum speed v_{max}: 150 km/h
Acceleration 0-100 km/h: 7.2 s
Range
 - KV01 cycle: 190 km
 - FTP72 cycle: 225 km (140 mls)
Vehicle weight m_{Fzg}: 1195 kg
Battery energy content: 22 kWh
Peak power (ECE R85): 125 kW
30 min power (ECE R85): 75 kW
BMW i8. VEHICLE CONCEPT.

- **Vehicle Type:** Hybrid
- **Maximum speed** v_{max}: 250 km/h
- **Acceleration 0-100 km/h:** 4.4 s
- **Fuel Consumption:** 2.5 l/100km
- **Electric Range:** 35 km
- **Vehicle weight** m_{Fzg}: 1490 kg
- **Power (el + ICE):** 96 kW + 170kW
- **Torque (el + ICE):** 250 Nm + 320Nm

THE POWERTRAIN OF THE BMW i8. POWERTRAIN SYSTEM OVERVIEW.

- 6-Speed Automatic Transmission
- High voltage battery
- 1.5 Litre TwinPower Turbo Engine
- Power Electronic HV SGR
- E-Motor
- 2 Gear E-Transmission
- Power Electronic Traction Motor
- HV SGR
BMW i3 AND i8.
GENERAL POWERTRAIN DEMANDS.

- **High efficiency**
 Increase range and reduce battery costs
- **Low weight**
 Due to the Light weight concept i3 & i8
- **Direct connected power electronic**
 Avoiding EMC problems and plugs
- **Lowest possible AC current**
 Reducing connections and inverter costs
- **Single speed gearbox (i3)**
 Reducing system complexity and weight
- **Wide range of constant power**
 Necessary due to single speed gearbox

BMW Group, Dr. J. Merwerth, 20.03.2014, Workshop University Lund

BMW i3.
DRIVE UNIT - TECHNICAL DATA.

- **Machine type:** PM-Motor (HSM)
- **Maximum torque** M_{max}: 250 Nm
- **Maximum speed** n_{max}: 11,400 1/min
- **Voltage range:** 250 – 400 V
- **Max. phase current** I_{eff}: 400 A
- **Number of pole pairs** p: 6
- **Weight:** appr. 65 kg
- **Cooling:** Liquid

BMW Group, Dr. J. Merwerth, 20.03.2014, Workshop University Lund
CHOICE OF THE MACHINE TYPE.
CONSIDERED TOPOLOGIES.

- **PSM:** Permanent magnet motor with surface mounted magnets.
- **IPM:** Motor with buried magnets. Different geometries possible.
- **HSM:** “Hybrid synchronous motor”. Special geometry of an IPM. Designed for high reluctance torque.
- **El.Ex.Sm:** Electrically excited synchronous machine.
- **ASM:** Asynchronous machine.

COMPORATION OF DIFFERENT MACHINE TOPOLOGIES FOR LIMITATED STATOR CURRENT.
COMPARATION OF DIFFERENT MACHINE TOPOLOGIES. CHOICE OF MACHINE TYPE.

<table>
<thead>
<tr>
<th></th>
<th>PSM</th>
<th>IPM</th>
<th>HSM</th>
<th>El.Ex.SM</th>
<th>ASM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant power over speed range</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Torque per stator current</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Efficiency over complete operating range</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weight</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BMW Group, Dr. J. Merwerth, 20.03.2014, Workshop University Lund

MOTOR OF THE BMW i3. HYBRID SYNCHRONOUS MOTOR.

Two layer magnet arrangement
- very sinusoidal induced voltage
- high difference \(L_d - L_q \)
High Number of pole pairs \((p = 6)\)
- to reduce the yoke weight
Iron mass reduced to the absolute necessary dimensions
- special attention to the mechanical strength

BMW Group, Dr. J. Merwerth, 20.03.2014, Workshop University Lund
MOTOR PERFORMANCE.
MEASURED MAXIMUM TORQUE CURVE.

M [Nm]	Pmech [kW]
0 | 0
250 | 250
50 | 50
150 | 150
200 | 200
250 | 250
300 | 300

n [1/min] 0 3000 6000 9000 12000

BMW Group, Dr. J. Merwerth, 20.03.2014, Workshop University Lund

MOTOR PERFORMANCE.
MEASURED EFFICIENCY OF THE MOTOR.

FTP72 Cycle
Full- and partial Load
Highway

BMW Group, Dr. J. Merwerth, 20.03.2014, Workshop University Lund
MOTOR PERFORMANCE. MEASURED EFFICIENCY.

- During a normal drive cycle the most energy conversion will take part at low torque.
- In this operating area, the iron losses are dominant and have to be minimized.

- Machine topology (HSM)
- Thin iron sheets in the stator
- Special rotor geometry (additional slits)

MECHANICAL DESIGN AND LIGHT WEIGHT CONCEPT. COMPLETE MOTOR.
MECHANICAL DESIGN.
LIGHT WEIGHT CONCEPT.

-- High number of pole pairs (6) to reduce the mass of the stator and rotor yoke.

-- Rotor iron reduced to the absolute necessary dimensions regarding:
 -- Flux conduction
 -- Mechanical strength

CONCLUSIONES.

-- The hybrid synchronous motor is the most suitable drive regarding the powertrain demands of the i3 & i8.

-- The use of the reluctance torque provides a high available power in the upper speed range.

-- Furthermore the efficiency is very high in a wide operating area.

-- First electric Motor completely designed and produced by the BMW Group.
THANK YOU FOR YOUR ATTENTION.